Unit 9 Lesson 1: Circles

Circle: The set of all points in a plane at a fixed distance (radius) from a fixed point (center).

```
Standard Form Equation for a Circle: }(x-h\mp@subsup{)}{}{2}+(y-k\mp@subsup{)}{}{2}=\mp@subsup{r}{}{2}\mathrm{ ,
center = (h,k) and radius = r
```

Ex) Write the standard form equation of a circle with center ($-2,5$) and radius 3

$$
(x+2)^{2}+(y-5)^{2}=9
$$

Be sure to review distance and midpoint formulas for the purpose of writing other equations. Also be able to identify center and radius given a standard form equation.

General Form Equation for All Conics: $\quad A x^{2}+B x y+C y^{2}+D x+E y+F=0$
General form is the expanded form of a standard equation.

If we look at general form, the characteristics that will define an equation of a circle are $B=0$ and $A=C=1$.
(In words, there is no xy term in a circle and the coefficients of the squared terms must be equal including signs!)

Since for circles we will always reduce coefficients of the squares to 1 , we will write a special general form for circles (other conics will NOT require this)

General Form for Circles

$$
x^{2}+y^{2}+D x+E y+F=0
$$

To change from general to standard form, we will need to remember how to complete the square. In the next example, we will change to standard form and review the completing the square process.

Ex.) Find the center and radius of $x^{2}+y^{2}-10 x+4 y+17=0$
Step 1: Make sure coefficients of squared terms =1. If not, divide entire equation by the coefficient.
Step 2: Move constant to right hand side of equation

$$
x^{2}+y^{2}-10 x+4 y=-17
$$

Step 3: Gather x terms together and y terms together

$$
x^{2}-10 x+y^{2}+4 y=-17
$$

Step 4: Multiply one-half times each linear coefficient, square this number and add to both sides of the equation

$$
x^{2}-10 x+\mathbf{2 5}+y^{2}+4 y+\mathbf{4}=-17+\mathbf{2 5}+\mathbf{4}
$$

Step 5: Factor the two trinomials and combine like terms on right side of equation.

$$
(x-5)^{2}+(y+2)^{2}=12 \quad \text { Center }(5,-2) \quad \text { radius } 2 \sqrt{3}
$$

Ex) Find the center and radius of the circle that passes through the points $(-2,3),(6,-5)$, and $(0,7)$

Since the points given are not related to a radius or center, we will take each and substitute into general form: $\quad x^{2}+y^{2}+D x+E y+F=0$
$(-2,3):(-2)^{2}+3^{2}-2 D+3 E+F=0 \quad O R-2 D+3 E+F=-13$
$(6,-5): 6^{2}+(-5)^{2}+6 D-5 D+F=0 \quad$ OR $\quad 6 D-5 E+F=-61$
$(0,7): \quad 0+7^{2}+0 D+7 E+F=0$
OR $\quad 7 E+F=-49$

So now we must solve the system for D,E,F and substitute the values into general form. Then we complete the square to find standard form so that we may name center and radius.

Rather than solving this system, we will use the matrix feature on the TI. We will create a matrix of coefficients and constants on the calculator. It will look like this

$$
\left[\begin{array}{rrrr}
-2 & 3 & 1 & -13 \\
6 & -5 & 1 & -61 \\
0 & 7 & 1 & -49
\end{array}\right]
$$

This is a 3×4 ("3 by 4") matrix because it has 3 rows and 4 columns. These are the dimensions of the matrix

IN THE TI
$2^{\text {nd }} x^{-1}$ (MATRX) Choose EDIT- ENTER
MATRIX A 3x4 (enter dimensions)
A matrix is formed for you to type in entries
(note $1^{\text {st }}$ column is D-coeff, the $2^{\text {nd }}$ column is E-coeff, etc. that is why we have a 0 placeholder in row 3) When finished typing entries in the matrix, $2^{\text {nd }}$ MODE (QUIT)

Go back into matrix menu, $2^{\text {nd }} x^{-1}$ (MATRX) Choose MATH
On this menu, scroll to B: ref (this stands for row reduced echelon form) ENTER
You should now see ref (on your homescreen.
Go back into matrix menu, $2^{\text {nd }} x^{-1}$ (MATRX) Choose NAMES ENTER so that [A] now has been carried to home screen and now you should see rref([A]) Press ENTER

You should see a matrix that looks like this now

$$
\left[\begin{array}{llll}
1 & 0 & 0 & -10 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & -21
\end{array}\right]
$$

Consider the top row with the context we entered it...it would be
$1 D+0 E+0 F=-10$, in other words $D=-10$. Looking at the next 2 rows the same way
$D=-10, E=-4, F=-21$. We will now plug these values back into general form.
$x^{2}+y^{2}-10 x-4 y-21=0$ From here we complete the square to find center and radius
$\left(x^{2}-10 x+25\right)+\left(y^{2}-4 y+4\right)=21+25+4$
$(x-5)^{2}+(y-2)^{2}=50$ Our equation is in standard form, so we can now answer
Center $(5,2)$ Radius $5 \sqrt{2}$

The process on the calculator should be reviewed. We could solve any system of equations this way. It is a bit of a long process, but it allows the calculator to use elimination to solve a system of equations.
I. Write the equation of the circle using the given information

1. Center $(3,-4)$; radius 1.5
2. Endpoints of a diameter $(-2,-6),(4,3)$
3. Center $(2,4) ;(-1,3)$ is a point on the circle
4. Passing through $(8,2),(1,9)$, and $(1,1)$
5. Passing through $(0,-1),(2,-3),(4,-1)$
6. Passing through $(-3,-2),(-2,-3),(-4,-3)$
7. Center $(7,-3)$; tangent to the y-axis
II. Find the center and radius of each circle
8. $x^{2}+y^{2}-2 y-15=0$
9. $x^{2}+y^{2}-8 x-6 y+21=0$
10. $4 x^{2}+4 y^{2}-16 x-9 y-5=0$
