Remote Lesson 8.2 Logarithmic Functions

Analyze the graph of the log function $f(x) = \log x$

*** $y = log_b x$ if $f b^y = x$ You MUST be able to <u>quickly and efficiently</u> change from one form to another!!

Examples

- 1. Write in log form
 - a. $5^2 = 25$ $log_5 25 = 2$ b. $4^0 = 1$ $log_4 1 = 0$ c. $8^{-1} = \frac{1}{8}$ $log_8 \frac{1}{8} = -1$
- 2. Write in exponential form

a.
$$\log_4 16 = 2$$
 $4^2 = 16$

b.
$$\log_7 \frac{1}{49} = -2$$
 $7^{-2} = \frac{1}{49}$

c. $\log_{12} 1 = 0$ $12^0 = 1^{49}$ **notice, this statement would mean anytime we take the log of 1, The answer will be 0, regardless of the base of the log

- 3. Evaluate (for each expression, begin by attaching = x to the statement)
 - a. log₃9 =2
 - b. $log_4 32$ $4^x = 32$ in order to solve for x, we need to get like bases $2^{2x} = 2^5$ So, $x = \frac{5}{2}$
 - c. $log_5\sqrt{5}$ $5^x = \sqrt{5}$ $5^x = 5^{\frac{1}{2}}$ you must now how to change radicals to exponents! $x = \frac{1}{2}$
 - d. $6^{\log_6 4}$ This is an exponential statement. We will change to log form $\log_6 x = \log_6 4$ So x = 4

Definition

Common Logarithm: Log with base 10 (calculator does common logs). This base is not written.

:. $\log 10 = 1$ (because $10^x = 10$, so x = 1) $\log 100 = 2$ $\log 1 = 0$ $\log 0.1 = -1$

so log 27.3 \approx 1.4362 means $10^{1.4362}$ \approx 27.3

Recall $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ ($y = e^x$ --the natural exponential function) Its inverse is a natural logarithm (In). $\therefore y = \ln x \text{ if } f e^y = x$

Examples: Evaluate

1. $\ln \sqrt{e} = \frac{1}{2}$ (because $e^{x} = \sqrt{e}$, or $e^{x} = e^{\frac{1}{2}}$) 2. $\ln e^{5} = 5$ (because $e^{x} = e^{5}$, so x = 5

Graphing: Ln and Log graph the same (just different bases). Know the transformations

Example) How is the graph of $f(x) = \log x$ transformed to obtain the graph of

- 1. $f(x) = \log (x 2)$ H shift R2
- 2. $f(x) = \log(-2x + 4)$ H shrink $\frac{1}{2}$, reflect over y-axis, H shift R2
- 3. $f(x) = -\log x + 6$ Reflect over x-axis, V shift up 6
- 4. f(x) = 3logx 4 V stretch 3, V shift down 4

IT IS CRITICAL THAT YOU KNOW LOG PROPERTIES WELL!

Properties of Logarithms (also works for Ln)

	$log_b(rs) = log_br + log_bs$	$(\ln(rs) = \ln r + \ln s)$
2.	$\log_b \frac{r}{s} = \log_b r - \log_b s$	$\left(\ln\frac{r}{s} = \ln r - \ln s\right)$
	$log_b r^c = c * log_b r$	$(\ln r^c = c \ln r)$

Change of Base Formula

$$\log_b a = \frac{\log_c a}{\log_c b}$$

***Smart bases to change to would be 10 or e as both can be done on the calculator.

So to put $\log_3 19$ into the calculator, we would apply the formula and get

 $\log_3 19 = \frac{\log 19}{\log 3} \approx 2.6801$. Notice if we had changed to natural logs, $\log_3 19 = \frac{\ln 19}{\ln 3} \approx 2.6801$

HW>> p. 308 (1-47 odd) p. 317 (1-35 odd 39, 41, 53)