Remote Lesson 8.2

Logarithmic Functions

Analyze the graph of the \log function $f(x)=\log x$

Domain: $(0, \infty)$
Range All reals
Increasing throughout domain

Decreasing never
Continuity Continuous
Boundedness not bounded

Symmetry none

Asymptotes $x=0$
Extrema none
End Behavior $\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow-\infty} f(x)=$ dne

${ }^{* * *} y=\log _{b} x$ iff $b^{y}=x \quad$ You MUST be able to quickly and efficiently change from one form to another!!

Examples

1. Write in log form
a. $5^{2}=25 \quad \log _{5} 25=2$
b. $4^{0}=1 \quad \log _{4} 1=0$
c. $\quad 8^{-1}=\frac{1}{8} \quad \log _{8} \frac{1}{8}=-1$
2. Write in exponential form
a. $\log _{4} 16=2 \quad 4^{2}=16$
b. $\log _{7} \frac{1}{49}=-2 \quad 7^{-2}=\frac{1}{49}$
c. $\log _{12} 1=0 \quad 12^{0}=1 * *$ notice, this statement would mean anytime we take the \log of 1 , The answer will be 0, regardless of the base of the log
3. Evaluate (for each expression, begin by attaching $=x$ to the statement)
a. $\log _{3} 9=2$
b. $\log _{4} 324^{x}=32$ in order to solve for x , we need to get like bases
$2^{2 x}=2^{5}$
So, $x=\frac{5}{2}$
c. $\log _{5} \sqrt{5} 5^{x}=\sqrt{5}$
$5^{x}=5^{\frac{1}{2}}$ you must now how to change radicals to exponents! $x=\frac{1}{2}$
d. $6^{\log _{6} 4}$ This is an exponential statement. We will change to log form

$$
\log _{6} x=\log _{6} 4
$$

$$
\text { So } x=4
$$

Definition

Common Logarithm: Log with base 10 (calculator does common logs). This base is not written.
$\therefore \log 10=1$ (because $10^{x}=10$, so $x=1$)
$\log 100=2$
$\log 1=0$
$\log 0.1=-1$
so $\log 27.3 \approx 1.4362$ means $10^{1.4362} \approx 27.3$

Recall $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e} \quad\left(y=e^{x}\right.$--the natural exponential function)
Its inverse is a natural logarithm (ln). $\therefore y=\ln x$ iff $e^{y}=x$

Examples: Evaluate

1. $\ln \sqrt{e}=\frac{1}{2}$ (because $e^{x}=\sqrt{e}$, or $e^{x}=e^{\frac{1}{2}}$)
2. $\ln e^{5}=5$ (because $e^{x}=e^{5}$, so $x=5$

Graphing: Ln and Log graph the same (just different bases). Know the transformations

Example) How is the graph of $f(x)=\log x$ transformed to obtain the graph of

1. $f(x)=\log (x-2) \mathrm{H}$ shift R2
2. $f(x)=\log (-2 x+4) \mathrm{H}$ shrink $\frac{1}{2}$, reflect over y -axis, H shift R 2
3. $f(x)=-\log x+6$ Reflect over x-axis, V shift up 6
4. $f(x)=3 \log x-4 \mathrm{~V}$ stretch $3, \mathrm{~V}$ shift down 4

IT IS CRITICAL THAT YOU KNOW LOG PROPERTIES WELL!

Properties of Logarithms (also works for Ln)

1. $\log _{b}(r s)=\log _{b} r+\log _{b} s$

$$
(\ln (r s)=\ln r+\ln s)
$$

2. $\log _{b} \frac{r}{s}=\log _{b} r-\log _{b} s$ $\left(\ln \frac{r}{s}=\ln r-\ln s\right)$
3. $\log _{b} r^{c}=c * \log _{b} r$
$\left(\ln r^{c}=c \ln r\right)$

Change of Base Formula

$$
\log _{b} a=\frac{\log _{c} a}{\log _{c} b}
$$

***Smart bases to change to would be 10 or e as both can be done on the calculator.
So to put $\log _{3} 19$ into the calculator, we would apply the formula and get
$\log _{3} 19=\frac{\log 19}{\log 3} \approx 2.6801$. Notice if we had changed to natural $\operatorname{logs}, \log _{3} 19=\frac{\ln 19}{\ln 3} \approx 2.6801$

HW>> p. 308 (1-47 odd) p. 317 (1-35 odd 39, 41, 53)

