
Remote Lesson 7.2 

ZEROS OF POLYNOMIAL FUNCTIONS 

 

Synthetic Division:  Used when a polynomial P(x) is divided by (x-r).  Notice, synthetic 

division can and should be used when the denominator is linear (1st degree).   

 

Ex1:  Find the remainder  
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Please find a video to review synthetic division if necessary. Quick reminders. The 0 in the top 

row represents the coefficient of 𝑥2, because the polynomial must be written in descending order. 

Also, remember what is happening- we are dividing a 3rd degree polynomial by a 1st degree 

polynomial, so our quotient (answer) will be a 2nd degree polynomial and its coefficients lie on 

the bottom line. 

 

But if all we need is the remainder, we have a better way. 

 

 

Remainder Theorem:  If a polynomial P(x) is divided by (x-r),  

                                       the remainder is P(r). 

 

 

**Return to example 1 and find the remainder using the theorem 

So here, 𝑃(𝑥) = 𝑥3 − 7𝑥 − 4, 𝑎𝑛𝑑 (𝑥 − 𝑟) 𝑤𝑜𝑢𝑙𝑑 𝑏𝑒 (𝑥 + 1), 𝑚𝑎𝑘𝑖𝑛𝑔 𝑟 = −1 

 

So, 𝑃(𝑟) = 𝑃(−1) = (−1)3 − 7(−1) − 4 = −1 + 7 − 4 = 𝟐 

 

We get the same answer, so the question you want to ask yourself is when would we only want to 

know a remainder? 

 

 

Factor Theorem:  (x-r) is a factor of P(x) iff P(r) = 0. 

 

 

Ex2:  Is (x-5) a factor of x
3
- 4x

2
- 7x +10? 

𝑃(𝑥) = 𝑥3 − 4𝑥2 − 7𝑥 + 10 𝑎𝑛𝑑 (𝑥 − 𝑟) 𝑖𝑠 (𝑥 − 5), 𝑠𝑜 𝑟 = 5  

 

𝑃(5) = 53 − 4(5)2 − 7(5) + 10, 𝑠𝑜 𝑃(5) = 125 − 100 − 35 + 10 = 0  

 

Final Answer:  (𝒙 − 𝟓) 𝒊𝒔 𝒂 𝒇𝒂𝒄𝒕𝒐𝒓 𝒐𝒇𝒙𝟑 − 𝟒𝒙𝟐 − 𝟕𝒙 + 𝟏𝟎 

 

So to answer the earlier question, we would want to know only a remainder to see if we have 

a factor.  IF we have a factor, it would make sense to do the division at the beginning.  If 

not, then we would save ourselves from having to divide. 

 



We need to consider the implications of the following statements: 

1. x = k is a solution (root) of f(x) = 0.  Solutions or roots imply any answers within the 

complex number system (includes imaginaries). Answers in the form x= 

2. k is a zero of f.  Zeros TYPICALLY refer to x-intercepts (though some sources now lump 

them in with roots and solutions). If they are considered x-intercepts, that would limit us 

to the answers only in the real number system.  

3. k is an x-intercept of the graph y = f(x). This would be the equivalent of #2 

4. (x-k) is a factor of f(x). As we just saw in the last example problem, factors are in the 

form (x-r). So if (x-5) is a factor of f(x), then x=5 is a root of f(x). 

 

 

 

 

So as we look at polynomial equations of a degree higher than 2, we have to look at the idea 

that factors come from division.  Below is one method we will consider. 

 

 

 

 

 

 

 

Ex3  Find ALL roots of 2x
5
+ 3x

4
- 6x

3
+ 6x

2
- 8x+3 = 0 

 

So, keep in mind, the above theorem will only help us find rational solutions. No irrationals (like 

√5) and no imaginaries. This theorem gives us a place to start. Think about the quadratic 

formula—can we find irrational answers there (YES!). Can we find imaginaries there (YES!). So, 

our goal will be to divide this down to a quadratic (hopefully) and from there use factoring or the 

quadratic formula to find remaining solutions in case they are irrational or imaginary. 

 

 

Let’s get started.  The polynomial must be written in descending order. Our p values will 

come from the constant, 3, and our q values will come from the leading coefficient, 2. Our 

list of possible rational roots will be 

 
𝒑

𝒒
=

𝒇𝒂𝒄𝒕𝒐𝒓𝒔 𝒐𝒇 𝟑

𝒇𝒂𝒄𝒕𝒐𝒓𝒔 𝒐𝒇 𝟐
=

±𝟏,±𝟑

±𝟏,±𝟐
= ±𝟏, ±𝟑, ±

𝟏

𝟐
, ±

𝟑

𝟐
.   

 

The theorem tells us these are the only numbers that could possibly divide evenly into P(x). 

We will begin with the easiest possible root, 1 

 

 
 

 

 

 

 

 

 

 

 

Rational Root Theorem:  Given a polynomial P(x) written in descending order, 

if 
q

p
 is a root of the equation, then p is a factor of the constant and q is a factor 

of the leading coefficient. 

 



We have our first root, x=1. We also now know that both (𝒙 − 𝟏)𝒂𝒏𝒅  
(𝟐𝒙𝟒 + 𝟓𝒙𝟑 − 𝒙𝟐 + 𝟓𝒙 − 𝟑) are factors of P(x). Remember, we are trying to get our 

polynomial down to quadratic. Let’s think transitively for a moment.  Since, 

(𝟐𝒙𝟒 + 𝟓𝒙𝟑 − 𝒙𝟐 + 𝟓𝒙 − 𝟑) is a factor of P(x), wouldn’t it stand to reason that anything that 

is a factor of (𝟐𝒙𝟒 + 𝟓𝒙𝟑 − 𝒙𝟐 + 𝟓𝒙 − 𝟑), would also be a factor of P(X)? WE DO NOT 

NEED TO CHANGE OUR 
𝒑

𝒒
 LIST! However we will now try to find factors of  

(𝟐𝒙𝟒 + 𝟓𝒙𝟑 − 𝒙𝟐 + 𝟓𝒙 − 𝟑) . So back to it 

 

Let’s try -3 from our list. 

 

 

 

 

 

 

 

 

 

We have our second root of x=-3 and we also now know that 𝟐𝒙𝟑 − 𝒙𝟐 − 𝟐𝒙 − 𝟏 is a factor 

of P(x). Note, had we not gotten zero as our remainder, we would have kept trying numbers from 

the list until we did. 

 

Following our transitivity thought we will now look for factors of  𝟐𝒙𝟑 − 𝒙𝟐 − 𝟐𝒙 − 𝟏. 

Looking at 2s and 1s next to each other, 
𝟏

𝟐
 seems like a logical choice from our 

𝒑

𝒒
 list. 

 

 

 

 

 

 

 

 

 

 

We have found our 3rd root! Not only that, notice our remaining polynomial is a quadratic 

(3 terms). We MUST at this point pull out the quadratic and use known methods (factoring, 

quadratic formula, etc) to solve in irrationals or imaginaries exist as roots of this 

polynomial. We will now solve 𝟐𝒙𝟐 + 𝟎𝒙 + 𝟐 = 𝟎 using the method of your choosing 

 

𝟐𝒙𝟐 + 𝟐 = 𝟎  

𝟐𝒙𝟐 = −𝟐  

𝒙𝟐 = −𝟏  

𝒙 = ±𝒊  

 

We have solved our 5th degree polynomial. We have found 5 roots 

Final answer: 𝒙 = −𝟑,
𝟏

𝟐
, 𝟏, ±𝒊 

   

 



Let’s try one more 

 

Ex4  Find ALL roots of 2x
3
+2x

2
+8x+ 8 = 0 

 
𝒑

𝒒
=

𝒇𝒂𝒄𝒕𝒐𝒓𝒔 𝒐𝒇 𝟖

𝒇𝒂𝒄𝒕𝒐𝒓𝒔 𝒐𝒇 𝟐
=

±𝟏,±𝟐,±𝟒,±𝟖

±𝟏,±𝟐
= ±𝟏, ±𝟐, ±𝟒, ±𝟖, ±

𝟏

𝟐
  

 

Try 1 

 

                                                                                  Doesn’t work…we will try another 

 

 

 

 

 

 

 

Try -1 

                                                                                    We have our first root at x=-1. 

                                                                                     We are also down to quadratic 

                                                                                      We will pull it out and solve 

 

 

 

 

 

𝟐𝒙𝟐 + 𝟖 = 𝟎  

𝟐𝒙𝟐 = −𝟖  

𝒙𝟐 = −𝟒  

𝒙 = ±𝟐𝒊  

Final Answer:  𝒙 = −𝟏, ±𝟐𝒊 
 

So both of these examples support The Fundamental Theorem of Algebra which tells us 

that within the complex number system, a polynomial of degree n will have n solutions. 

 

HOWEVER, the process almost inspires more questions than it answers. The first question 

might be how do we know which numbers will work from the list or are we just guessing?  

Quickly followed by what are we going to do with a long list of factors (for instance a 

constant of 36 and a leading coefficient of 72).   

 

 

This is going to be, to some extent, a trial and error process like factoring 

Below are some ideas to help rein in the process a little. 

 

 

 

 

 

 

 

 



 

 

 

 

***Look at the last example.  How would this help in our process? This was our question 

 

 

Find ALL roots of 2x
3
+2x

2
+8x+ 8 = 0 

 

This was our list of possible roots 
𝒑

𝒒
=

±𝟏,±𝟐,±𝟒,±𝟖

±𝟏,±𝟐
= ±𝟏, ±𝟐, ±𝟒, ±𝟖, ±

𝟏

𝟐
  

 

 

We tried 1 

 

                                                                      Reading about bounds, the k value we have is 1 

                                                                      The “last line” is 2, 4, 12, 20 

                                                                      All of our numbers are nonnegative  

                                                                      K=1 is an upper bound for the zeros of f. 

 

 

 

 

The significance of an upper bound is that none of the numbers in our 
𝒑

𝒒
 list that are larger 

than 1  are going to give a zero remainder.  So we will not need to try 2, 4, and 8 from our 

list, they will not work.   

 

Let’s look at the lower bound end of things.  These would be our negative 
𝒑

𝒒
 values 

 

We tried -1 

 

                                                        Our k value is -1           

                                                        The “last line” is 2, 0, 8, 0 

                                                        These numbers are alternating nonnegative and                                

                                                         Nonpositive. (zero fits in either category so we think 

                                                         2 is nonnegative and 0 is nonpositive, etc 

                                                         -1 is a lower bound for the zeros of f 

So no numbers from the list that are less than -1 will not yield factors. 

Upper and Lower Bounds:  Let f be a polynomial function of degree n > 1 with a 

positive leading coefficient.  Suppose f(x) is divided by (x – k) 

 

• If k > 0 and every number in the last line is nonnegative, then k is an upper 

bound for the real zeros of f. 

• If k < 0 and the numbers in the last line are alternately nonnegative and 

nonpositive, then k is a lower bound for the zeros of f 

 



This would be part of the “narrowing” process for longer 
𝒑

𝒒
 lists. As a means of working 

through the problem, always start with the easiest values—try 1, -1, even 2, -2. If the list is 

long, move to the middle and do the division. See if you have a bound. If you do, you have 

eliminated a set of numbers from the long list. This is just to help in the trial and error 

process. 

 

In the book, the questions look like this. 

 

Ex) use synthetic division to prove that the number, k, is an upper bound for the zeros of f.  

       𝒌 = 𝟓; 𝒇(𝒙) = 𝟐𝒙𝟑 − 𝟓𝒙𝟐 − 𝟓𝒙 − 𝟏 

So they instruct you the number to try.  The point is to make sure you can recognize it is a 

bound.   

             

 

 

 

 

 

 

In the bottom line, all numbers are nonnegative (no sign change) so 5 is an upper bound. 

 

 

 

 

 

 

In a previous math course, you examined the discriminant to determine what type of 

solutions you were going to get from a quadratic. As you recall the discriminant is the value 

of 𝒃𝟐 − 𝟒𝒂𝒄 

 

For example you may have had a quadratic like, 𝒇(𝒙) = 𝟐𝒙𝟐 − 𝟕𝒙 + 𝟗.  In that quadratic, 

a=2, b=-7 and c=9. So the discriminant would have a value of (−𝟕)𝟐 − 𝟒(𝟐)(𝟗) = −𝟐𝟑.  

-23 is the value under the square root, so you now know that you are going to get 2 complex 

solutions when you go to solve. Finding the discriminant is just a quick way to “diagnose” 

the type of solution.  

 

Below, is the method used for polynomial functions whose degree is higher than 2. 

 

 

 

 

 

 

This could be helpful for when we are using our calculator and wanting to make sure 

we are capturing all the real zeros on our screen. We can go to the window and test 

our x-max for an upper bound and our x-min for a lower bound. If we can establish 

both bounds, then we know we have all of the real zeros of the function 



OPTIONAL! 

 

 

 

So as you read this rule of signs, keep in mind that is finds the possible real roots.  This does 

NOT account for complex solutions containing imaginary numbers. Complex solutions 

always come in pairs (if a+bi is a root, then a-bi is also a root). Because there are 2, we have 

to say “or less than this by an even number.” It leaves room for possible imaginary 

solutions. 

 

Ex) Find the number of positive and negative real roots. 

 

1. P(x) = x 8323 234 ++−− xxx  

There are two sign changes in P(x), so P(x) has 2 or 0 positive real roots 

 

       𝑷(−𝒙) = (−𝒙)𝟒 − 𝟑(−𝒙)𝟑 − 𝟐(−𝒙)𝟐 + 𝟑𝒙 + 𝟖 

       𝑷(−𝒙) = 𝒙𝟒 + 𝟑𝒙𝟑 − 𝟐𝒙𝟐 + 𝟑𝒙 + 𝟖 

 

       P(-x) has 2 sign changes, so P(-x) has 2 or 0 negative real roots 

 

We have answered the question. We have now different scenarios ( you are not 

required to name these, but it helps with the understanding of the Rule).  Our degree 

four polynomial has either 

a) 2 positive real roots and 2 negative real roots OR 

b) 2 positive real roots, 0 negative real roots, and 2 complex roots OR 

c) 0 positive real roots, 2 negative real roots, and 2 complex roots OR 

d) 0 positive real roots, 0 negative real roots and 4 complex roots 

 

 

2. P(x) = 𝒙𝟑 − 𝟒𝒙𝟐 + 𝒙 − 𝟐 

 

P(x) has 3 sign changes so P(x) has 3 or 1 positive real roots 

 

𝑃(−𝑥) = −𝑥3 − 4𝑥2 − 𝑥 − 2  

 

             P(-x) has no sign changes so P(x) has no negative real roots 

 

 

 

Descartes’ Rule of Signs 

Given a polynomial equation p(x) = 0, the number of positive real roots is the same as the 

number of sign changes in p(x) or is less than this by an even number.  The number of 

negative real roots is the same as the number of sign changes in p(-x) or is less than this by 

an even number. 

 

This can also help in having long lists of possible rational solutions. It enables 

us to “troubleshoot” the polynomial.   
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